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Ballistic Behavior in a 1D Weakly Self-Avoiding 
Walk with Decaying Energy Penalty 

T o m  Kennedy I 

Receioed February 25. 1994 

We consider a weakly self-avoiding walk in one dimension in which the penalty 
for visiting a site twice decays as exp[ - f l  It - s l - P ] ,  where t and s are the times 
at which the common site is visited and p is a parameter. We prove that ifp < 1 
and fl is sufficiently large, then the walk behaves ballistically, i.e., the distance 
to the end of the walk grows linearly with the number of steps in the walk. We 
also give a heuristic argument that ifp > 3/2, then the walk should have diffusive 
behavior. The proof and the heuristic argument make use of a real-space renor- 
malization group transformation. 
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1. INTRODUCTION 

The weakly self-avoiding walks which we will study are nearest-neighbor 
walks on  a lat t ice which are  a l lowed  to self-intersect  but  are  pena l ized  

when  they do  so. W e  deno te  the n u m b e r  of  steps in the walk by N, 
A walk  o9(I) is a func t ion  f rom {0, 1, 2 ..... N}  into  the lat t ice Z d with 

I 0 9 ( t ) - 0 9 ( t - 1 ) l = l  for t = l ,  2 ..... N and  09 (0 )=0 .  F o r  weakly  self- 

avo id ing  walks  one  usual ly  defines an  energy  func t ion  

~(09) = ~ l(09(s) = 09(t)) (1) 
I ~ s < t < ~ N  

which  counts  the n u m b e r  of  self- intersect ions in the walk [ l ( 0 9 ( s ) = 0 9 ( t ) )  
is 1 if 09(s)= 09(0 and is 0 o the rwise ] .  We  define a p robab i l i t y  measu re  on  

the set of  walks  by 

Prob(09) = e x p [  - f l H ( 0 9 ) ] / Z  (2) 
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where the normalization factor Z is defined by the requirement that this is 
a probability measure. (Throughout  this paper the energy functions and 
the corresponding probability measures depend on N, the number  of steps 
in the walk, but we will not  make this dependence explicit.) We will always 
take the parameter fl to be positive. For  self-avoiding walks ( f l=  ~ )  one 
only allows nearest-neighbor walks that never visit the same site more than 
once. Each such walk of length N is then given the same probability. 

There are many properties of these walks that are worth studying, but 
in this paper we will only be concerned with how the average distance from 
the origin to the end of the walk grows with the number  of steps in the 
walk. It is expected that it grows as a power, i.e., 

(co(N) 2) ~ c N  2" 

In five or more dimensions, Brydges and Spencer proved that v = 1/2 if/3 
is sufficiently smallJ 4) Slade then proved that v = 1/2 for the self-avoiding 
walk if the dimension is large enough, c~11 Finally, Hara  and Siade proved 
that v =  1/2 for the self-avoiding walk if the dimension is at least five ~7"8) 

(their proof also works for the weakly self-avoiding walk in five and more 
dimensions). In four dimensions, it is believed that v = 1/2 with logarithmic 
corrections. This has been proved in a hierarchical model, t-') and results 
have been obtained for the Green's function in a cont inuum model which 
is obtained by introducing a short-distance cutoff in the field theory 
representation of the Edwards model. ~91 

In one dimension the self-avoiding walk is trivial and v = I. We refer 
to this as ballistic behavior since it means that the distance traveled is 
proport ional  to the number  of steps. Bolthausen ~ proved that v = 1 for the 
weakly self-avoiding walk if/3 is sufficiently small, and Zoladek IIz) proved 
it for all/3 > 0 with a different definition of the energy function. Greven and 
den Hollander ~6~ showed that not only is v = 1, but the walk has a definite 
speed for any /3 > 0. In two and three dimensions there are no rigorous 
results on v. A summary of the nonrigorous work as well as a more detailed 
discussion of the rigorous results mentioned here may be found in ref. 10. 

In this paper we will consider a weakly self-avoiding walk in which the 
penalty for visiting a site twice decreases as the number  of steps between 
the two visits increases. More precisely, we take the energy function to be 

1 
H(~o)= _< ~ it_sl------ S l (co(s)=co(t))  (3) 

I ~ s < t ~ N  

where p is a parameter. The probability measure on the set of walks of 
length N is defined as before. The larger the parameter p is, the faster the 
penalty for self-intersection falls off with the number of steps between the 
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two visits. Thus p acts similarly to the dimension. (The larger the dimen- 
sion is, the less likely the walk is to intersect itself, and so the penalty for 
self-intersection is less important.)  

This model was studied by Caracciolo etaL for 2~<d~<4.15) They 
derived a variational mean-field approximation for the exponent v and 
estimated it by Monte Carlo simulations in two dimensions. Let VSAW 
denote the value of v for the ordinary self-avoiding walk. (This is expected 
to be the same as v for the ordinary weakly self-avoiding walk for all 
fl > 0.) Let VMF denote the value predicted by the mean-field approximation 
for the model (3). They computed that 

VMV= 1/2, p >  (4--  d)/2 

= ( 2 - p ) / d ,  p < ( 4 - d ) / 2  

They found that the numerical results supported the conjecture that the 
value of v is exactly given by v = min{vsaw, VMV}. 

In this paper we will study this model in one dimension. We will give 
nonrigorous arguments that if p > 3/2, then v = 1/2 and i fp  < 1, then v = 1. 
The results of Caracciolo et al. were for 2 ~< d~< 4, but if one simply takes 
d =  1 in their conjecture and uses VSAW = 1, then one obtains the same criti- 
cal values of p that our nonrigorous arguments will produce. The main 
result of this paper is a proof that if p < 1 and fl is sufficiently large, then 
the walk behaves ballistically, i.e., v = 1. More precisely, we show that 
there is a constant c such that for sufficiently large N, (co(N) -~) >_.cN 2. 
Moreover,  we show that we can take the constant c as close to 1 as we like 
by making fl sufficiently large, i.e., as fl ~ ~ the speed of the walk must 
converge to its maximum value of one. 

Brydges and Slade 13) studied a model in which the energy function 
equals (1) times N -p. While their primary interest was in the collapse 
transition that occurs when fl < 0, their results also cover the attractive case 
(fl > 0). In one dimension with p = 3/2 they showed that the walk is dif- 
fusive for any fl > 0. In two or more dimensions with p = 1 they showed the 
walk is diffusive for any fl > 0. For  the model studied in this paper in one 
dimension with p = 3/2, it is expected that there will be logarithmic correc- 
tions to the diffusive behavior. 

Both our nonrigorous arguments and our proof  make use of a real- 
space renormalization group transformation. In Section 2 we will define the 
transformation and give the heuristic arguments that the walk is ballistic 
for p < 1 and diffusive for p > 3/2. This argument also serves as an intro- 
duction to the proof  of the main result, which appears in Section 3. 



568 Kennedy 

2. R E N O R M A L I Z A T I O N  G R O U P  T R A N S F O R M A T I O N  A N D  
H E U R I S T I C  A R G U M E N T S  

Given a walk ~o, we "block it at scale L" as follows. The blocked walk 
+('2 will only take values which are mult iples of L. We will define times 
0 = to < t~ < t2 < . . .  < t , ,  <~ N for which f2(i) = co(t;). (The number  of times 
m and hence the length of I2 will vary depending on o9.) We start  by lett ing 
t o = 0. Having defined to, t~,..., t , ,  we define 

t,,+l = min{t  > t,,: I09 ( t ) -  09(t,,)l = L} 

If the set is empty,  then we take m = n and we stop. In words,  a single step 
in 12 is obta ined  as follows. Start ing at some mult iple of L, say k L ,  we 
follow 09 until it has traveled a distance L either to the right or  left and so 
it is at ( k -  1) L or ( k +  1) L. (On the way it may return to k L ,  but we do 
not  pay any a t tent ion to this.) An example of this b locking with L = 4 is 
shown in Fig. 1. 

This blocking has two slightly annoying features. First ,  the length of 
O depends on the par t icular  09 we start  with, not  just  on N. The number  
of steps in 1"2 is at most  N / L ,  but it could be as small as zero. Second, the 
last site visited by f2 is not  necessarily the last site visited by 09. The part  
of 09 from time t,,, to N is in some sense ignored by f2. However ,  dur ing this 
time interval the walk 09 never travels farther than L -  1 from 09(t,,,). This 

s S 
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i , , , . , , , i , , , �9 , , , i 

Fig. 1. An example of the RG transformation with L = 4. The original walk is the thin solid 
line, and the blocked walk is the thick dashed line. Both walks are walks in one dimension. 
What is shown here is a space-time plot of the walk, time being the vertical axis. 
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blocking can be iterated to produce walks which live on multiples of  L k for 
k =  I, 2 ..... Moreover,  this blocking has a semigroup property. Blocking 
twice with scale L is the same as blocking once with scale L 2. 

We now turn to the heuristic arguments that the walk is ballistic if 
p < 1 and diffusive i fp  > 3/2. It is convenient for these arguments to change 
the definition of the energy slightly. Instead of penalizing the walk when it 
visits the same site twice, we will penalize it when it traverses the same 
bond twice without regard to the direction in which it traverses the bond. 
We will also include the t3 in the Hamiltonian itself now. So 

1 
H(co)=/3 Z it_sl ~ l({co(s), co(s+ 1)} = {co(t), co(t + 1)}) 

s < t  

We would like to define a new effective Hamiltonian H for the walks 
(2 on scale L by 

e -  n<al = ~ e -It l~ 

( o :  co  ~ f 2  

The notation co: co ~ / 2  means that we sum over all co such that when 09 is 
blocked at scale L we get (2. The sum over co such that co ~ / 2  may be 
broken up into a product  over the steps i n / 2  of the sum over the section 
of co corresponding to this step in (2. More precisely, consider a step 12(T), 
( 2 (T+  1) in /2. The corresponding sequence of steps cO(tr),co(tr+ 1) ..... 
co(tr+ 1) in co satisfies 

CO(tT)=I-2(T), co(tr+l)=I2(T+ 1) 
(4) 

Ico(t)-g2(T)l  < L  if t r<t<tr+l  

Thus we can think of the sum over co: co ~ g2 as a product  of sums, one for 
each step in (2 with the piece of co in the sum subject to the constraints (4). 

We now assume that fl is very large. We want to compute  9 to lowest 
order in a low-temperature expansion. For  each step in .(2, the lowest-order 
term in the sum over the corresponding piece of co will be the walk which 
goes directly from 12(T) to g 2 ( T + I )  in L steps. So to lowest order, 
/-1(g2)= H(coo), where coo is the walk on the unit lattice which follows 12 
exactly and so has L steps for each step in/2.  

Let T and S be such that the bonds {.O(T),s"2(T+I)} and 
{O(S), ( 2 (S+  1)} are the same. Then there will be L pairs of bonds from 
the corresponding sections of co that are the same. They each receive an 
energy penalty o f / 3 / I t - s l  p. Since one step in f2 corresponds to L steps in 
co, we have It-sl  ~ L  ]T-SI.  So the energy in /~(s associated with the 
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bonds {J2(T), 12(T+ 1)} and {O(S), f 2 ( S +  1)} is f lL/(IT-SI  L) p. Thus to 
lowest order, H is given by 

1 
ffI(g2)=flL'-" ~ I T - S I  p l ( { a ( S ) ,  g2(S+ 1)} = {~(T) ,  g2(T+ 1)}) 

S < T  

S o / 4  has the same form as H with/~ replaced by i l L ' - P .  I f p  < 1, the renor- 
realized/~ is larger and if p > 1, it is smaller. Thus the/~ = co fixed point of 
the renormalizat ion group t ransformat ion is stable. This suggests that  the 
walk will behave ballistically when p < 1, at least for la rge/L 

We now turn to the heuristic argument  that  when p > 3/2 the walk 
behaves diffusively, i.e., v = 1/2. For  this argument  we assume that fl is 
small and compute  the leading term in a high-temperature expansion. As 
before, we think of the sum over o9 such that o9 --. f2 as a product  of sums, 
one for each step in O. For  a step s'2(T), g2(T+ 1 ) in f2 we sum over a piece 
of o9 which goes from O ( T )  to t 2 ( T +  1) subject to the constraints (4). In 
the low-temperature  expansion there was a single dominant  term in this 
expansion. When /~ is small, the sum will not. be dominated  by a single 
term. The walk co will wander  from g2(T) to g2(T+ 1) in O(L 2) steps. 
Consequently it will visit each of the L bonds between 12(T) and 
~(  T + 1 ) O(L) times. If { 12(S), O(S  + 1 ) } = { g2(T), t2( T + 1 )}, then the 
section of co corresponding to the step I2(S), g2(S + 1) will also visit each of 
these L bonds O(L) times. So the total number  of  pairs of bonds in o9 that  
are equal and correspond to these two steps in Y2 will be LO(L 2) = O(L3). 

When /~ is small, each step in 12 corresponds to O(L 2) steps in o9. 
Hence the number  of steps I t -s[  in 09 between the visit to the same bond 
is related to the number  of steps I T -  S[ in O between the visit to the same 
bond on scale L by [ t -s l  = O ( L  2) [T-S I .  Thus the energy in /-1 corre- 
sponding to the two steps O(S),  I 2 ( S + I )  and (2(T), 1 2 ( T + I )  is 
~O(L3)/(IT - S[ L2) p =  ~O(L 3- zP)/[T- SI p. The new Hamil tonian  is again 
of the same form with /~ replaced by flcL 3-2% where c is a constant. If 
p > 3/2, then we can use an L large enough that  cL 3- 2p is less than 1 and 
conclude that  /~ decreases. So the /~ = 0 fixed point of the renormalizat ion 
group is stable. This suggests that  the walk behaves diffusively when 
p > 3/2. 

3. PROOF IN THE BALLISTIC REGIME 

We now state and prove our main result. In the following theorem the 
energy function is given by (3). 
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Theorem 1. 
/~ >//~0 implies 

Let p < l .  For  every c t < l  there is a flo such that 

lim Prob(ICo(N)l >~c~N)= 1 
N ~ z t D  

We denote co blocked at scale L k by Qk(co), i.e., Ok(C0) is CO after k 
applications of the renormalization group transformation. If g2 is a walk on 
some scale, then It21 will denote the number  of steps in O. For  example, 
IOk(CO)I is the number  of steps in Ok(CO), each step being of length L k. 
Let I2 be a walk at some scale L k. We define R(f2) to be the number  of 
reversals in I2, i.e., the number  of t such that I 2 ( t -  1 )=  s'2(t + 1 ). 

Define 6 = (1 - p)/3 and 

Then define ? by 

Tk = L - l - , ~ ( k  + l) 

l - - y =  f i  (1--3LYk) 
k = 0  

The constants Yk converge to zero fast enough that the product  converges, 
and we can make y as close to 1 as we like by making L large enough. 

Now we define the exceptional events. 

Ek = {co: R(12k(W)) > Yk [I2k(CO)I } 

Here k starts at 0 and t2o(W) is just co. The ratio R(Ok(CO))/IOk(W)] is the 
fraction of steps in g2 blocked at scale L k for which the walk changes 
direction. Thus the exceptional event contains those walks for which this 
fraction is bigger than Yk. Let n be the integer for which L"<~ N <  L"+I 
There are two main parts to the proof. 

1. Show that walks which do not belong to any of the Ek are 
ballistic. 

2. Show that the probability of the union of the Ek is small. 

In a full-fledged renormalization group argument we would compute 
a new effective Hamiltonian after one application of the renormalization 
group transformation. We would then rescale to get back to the unit lattice 
and attempt to iterate this process. While our  proof  uses renormalization 
group ideas, we do not attempt to compute a new effective Hamiltonian 
and we do not rescale. The renormalization group transformation is used 
to define the "bad" events. But these events are always subsets of the 
original set of walks on the unit lattice. We begin with step 1, which is a 
purely deterministic statement. 
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L e m m a  2. For  every walk w, 

>_ 1_ IOk(~)l - 2R(Ok(CO)) lI2k+ )(co)l + 1 ~ ' L  

Proof. Consider a single step in Ok+~(CO). Let m be the number  of 
steps in the corresponding section of Ok(CO) and let r be the number  of 
reversals which take place in this corresponding section. If r = 0, then m is 
exactly L. Each reversal allows Ok(CO) to spend at most an additional 2L 
steps in traversing the step in Ok+ ~(CO). (This is a slightly less than optimal 
bound.) Hence m~< ( 2 r +  1)L. Rewriting this bound as 1 > ~ m / L - 2 r  and 
summing over the bonds in Ok+,(CO) yields the lemma. The section of 
Ok(CO) at the very end which does not correspond to a step in Ok+ ~(CO) 
contributes the + 1 to the left side of the inequality in the lemma. �9 

Proposit ion 3. If 09 r Ek for k = 0 ,  1, 2 ..... n -  1, then Ico(N)l >/ 
(1 --7 - l /L) N, where 1 - -y  = I-Ii~ 0 (1 - 3Lyi). 

Proof. If 09 r Ek, then the lemma implies 

IOk+ I(CO)I /> (1 --2LYk) IOk(CO)I/L-- 1 

= (1 - 3Lyk) IOk(co)l/L + Yk IOk(co)[ -- 1 

Both Yk and [Ok(co)l decrease as k increases. Let 1 be the last integer such 
that Yt [O~(co)[ >/1. l i t  is easy to see from the definition of Yk and the trivial 
bound IOk(co)l ~< NIL k that )'k ]Ok(CO)[ becomes less than 1 long before k 
reaches n.] For  k ~< l we have 

Thus 

IOk+ ~(co)l/> (1 -- 3L~k) IOk(CO)I/L 

/ 

I(2t+ l(co)l ~> L- ( /+  l) I-[ (1 -- 3L7i) N~> (1 - y) NL -"+ l) 
i = O  

- ~ ( 1 - 3 L y i ) .  where 1 - y  - I-[i=o 
Since Yt+l I~l+~(co)l < 1 and w e E j + l ,  we have R(f2t+l(co)) < 1 and 

so R(f2t+~(co)) must be zero. Thus (2t+l(co) consist of  at least 
(1 - 7 ) N L  -"+ ~) steps of size L ~+~ in the same direction. The final partial 
step may wipe out one of them, so we have 

Ico(N)l/> f(1 - 7 ) N L  - (~+l) -  1] L t+ '  

= (1 - y - L  t+ I/N) N>~ (1 - 7 -  l /L) N 

The last inequality uses N>~ L" and the fact that I is much less than n. �9 
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Now we turn to showing that the probability of Ek is small. Actually, 
we will show that the probability of E,\U~-_-~ Ei is small. Fix a value of k. 
Most  of the following definitions will depend on k, but we will not make 
this dependence explicit, to keep the notation from becoming too cumber- 
some. We will break E ,  up into a bunch of smaller sets which we now 
define. 

Let r =  R(t2k(co)) be the number  of reversals in the walk o9 blocked at 
scale L k. For  convenience let t2 denote (2k(co). Let ij, j =  1, 2 ..... r, be the 
times in s at which the reversals occur, i.e., O ( i j - 1 ) = t 2 ( i j + l )  for 
j =  1, 2 ..... r. These reversals come in two types. The walk can be going to 
the right and then switch to the left. We call this an RL reversal. In this 
case 1 2 ( ( j - 1 ) =  f2(ij+ 1 )=  s '2 ( i j ) - I .  When the walk switches from left to 
right we have s  1 ) = g2(ij + 1 ) = 12(i/) + 1, and we refer to this as an LR 
reversal. 

Let ti be the time in o9 which corresponds to time i in t2. So the section 
of co for t = ti to t = t~+~ corresponds to the single step of size L k in I2 for 
times i, i +  1. For  the j t h  reversal we let lj be distance that co overshoots 
Ok(co) at the j th  reversal (see Fig. 2). More precisely, for an RL reversal 

l j=  max co(t)-co(t O) 
tg<~t<~tg+l 

For  an LR reversal 

l j=  max -co(t)+co(tij) 
tg <~t<~h)+ 1 

Of course 0 ~< lj < L k. We denote the sequence (/j)~= j by _/(co). 

Fig. 2. 

s S  ~ 

li 

An illustration of the definition of / i. 
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Now fix an 12 at scale L k, let r = R(f2), and fix an _/. Define 

E(o ,  l) = {~,: o~(co) = ~ ,  lIco)=1} 

Suppose wr E; for i<k  and w e E, .  We argued before that I~,(o~)1 >/ 
(1 - y ) N I L  k. [Actually, we only proved this bound for k ~< 1+ 1, where l is 
the largest integer with ~,zlOt(co)l >/1. If weEk,  then f2,(to) has at least 
one reversal in it. Thus 0 k_ 1(o9) must have at least one reversal. Since 
oJ r E , _  i, this implies 7k-I It'2*-1(CO)1 >/ 1. NOW l is the largest integer such 

k - - 1  that y~lO~(w) l~>l ,  so we must have k - l < . l . ]  Thus w e E , \ U i =  o E,. 
implies 

Hence 

R(Ok(o~)) > yk(1 -- 7) N/L* (5) 

By Proposition 3, 

n - I  

{co: Iw(N)l < (1 - y -  1/L) N} c U Ek 
k = O  

We choose L large enough that (1 - 7 -  1/L)>1 ~x. (Recall that we can make 
7 as small as we want by making L sufficiently large.) The theorem now 
follows since n -~ oo as N--, oo. �9 

Ek E~cU U E(12,!) (6) 
i 13 I 

where the union over/2 is only over 12 with R(12)>Yk(1--y) NIL k. 

P r o p o s i t i o n  4. There exists an e '>  0 (depending on L) such that 
f o r k = 0 ,  1 ..... n - 1  

Prob Ek U Ei <~2exp(-fle'L "a) 
\ ~ i = 0  

[Recall that 6 =  ( 1 -  p)/3.] 

Before we prove Proposition 4, we complete the proof of Theorem 1. 

Proof of Theorem 1. Note that it is L"6 that appears in the right 
side of Proposition 4, not Lk6. Hence Proposition 4 implies 

Prob \k~= o ( ' - '  Ek ) <~ 2n exp( - fle'L "a) 
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We will use the following two lemmas to prove Proposi t ion 4. The 
proof  of the second lemma is trivial and will not be given. 

I . a m m a  5. There is a constant  e > 0 which depends on L such that 
for a walk s at scale L k 

Prob(E(12, ! )) -%< exp [ - fleL'-k'SR(I2)] 

L e m m a  6. For  every r > 0 there is a constant  c(r) such that c >>. c(r) 
implies xe-"'<<. 1 for all x~>0. 

Proof of Proposition 4. At each reversal the number  of possibilities 
for It is L k since 0 ~< It < L k. Thus, given s the number  of possible _/ is 
L kRla~. So the inclusion (6) and Lemma  5 imply 

Prob Ek Ei <~ ~ Lkma~exp[--fleL2k'~R((2)] 
i .(2: R ig2 )  > ) 'k(l  - ";)N/L* 

Using L e m m a  6 and assuming fl is large enough, 

S o  

Prob 

L k exp[  - �89 2k~] <~ 1 

Ek E, ~< ~ e x p [ -  �89 
i 12: R(Q) > yk( 1 - - 7 ) N / L  k 

~< exp[  -- �89 Zk~yk(1 -- y) NIL k] M 

where M is the number  of possible s The number  of steps in s is at most  
NIL k, and the number  of walks with <~N/L k steps is 2 ~ +N/Lk, so the 
probabil i ty is now 

~<2{2exp[  l%LZk~ ( }N/tk -_sp  Yk l - - y ) ]  

Using the definition of y~, this becomes 

= 2 { 2  exp[  - �89 --y)] }N/L* 

If fl is sufficiently large we can pick e' > 0 so that 

, 2 e x p [ _  J R^.k~ I-~(  _st,~L 1 -- y)]  ~< exp( --fle'L k~) 

Recalling that  N>~ L", we see that the probabil i ty is at most  

~<2 exp( -fle'Lk6N/L k) ~< 2 exp( - f l # L  k~+'-k) ~< 2 exp( - f l # L  "~) �9 
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Proof of Lemma 5. We define 

Z(I2, 1 ) =  ~ e /~nlo, I 

so that  

Prob(E((2,  l_)) = Z((2, I_)/Z 

F o r  each s and 1 we will define a map  on walks, co--, o3, which can 
be thought  of as "unfolding" the walk in a way that  depends on f2 and _/. 
If all the li were 0, this map  would be given as follows. We can unfold the 
walk 12 to produce  a walk with the same number  of steps of length L k, but  
with all the steps going to the right. We do the same t ransformat ion  to co. 
Each section of co which corresponds  to a single step in (2 is left rigid. This 
section is t ranslated and possibly flipped in the same way that  the corre- 
sponding step in (2 is t ranslated and possibly flipped. When  all the l i =  0, 
it is easy to see that  the new walk o3 has energy less than or  equal to the 
energy of the original  walk. However,  if some of the 1~ are not  zero, this 
need not  be the case. In fact the energy of o5 can be much higher. See Fig. 3 
for an example.  To avoid this increase in energy we must  modify the defini- 
tion of the unfolding. 

As before, t; denotes  the time in co which cor responds  to the time i in 
(2. In part icular ,  co(ti)=Q(i ). Also, f2 has reversals at the times ij for 
j =  1, 2 ..... r. F o r  each reversal we define another  t ime sj which we will refer 
to as a "flip time." The time sj will lie between % and t~,+ ~. Cons ider  an RL 
reversal which occurs at t ime j in 12. Between t = t~, and t = t~,+ t the walk 

Fig. 3. An example of a walk for which the naive unfolding greatly increases the energy 
rather than lowering it as needed for the Peierls argument. 
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co travels from I2(ij) to O( i j+  1 ) = C 2 ( i j ) - L  k. At some time (or possibly 
several times) it hits the site t-2(ij) + lj. The time sj is the first such time, i.e., 

sj= min{ t >~ ti : to(t)=12(ij) + lj } 

For  LR reversals 

sj = min{t/> %: ~o(t) = C2(ii) - lj} 

We will write down a formula for o3 in a moment,  but a verbal descrip- 
tion may be more informative. We have defined the flip times sj for 
j =  1,2 ..... r. Let S o = 0  and sr+~ = N .  In the unfolding to ~ th, we keep the 
walk rigid on each time interval [sj, si+ ~ ] , j = 0 ,  1 ..... r. We allow the walk 
to pivot at the times sj and then unfold the walk to produce a walk th that 
is as long as possible given the rigidity constraints. Figure 4 shows the 
unfolding process for a single reversal. The formula for ch is as follows. Let 
S j ~ I ~ S j +  I , I f j  is odd, 

~ ( t )  = ~(SJ) + [co(st) - ~ ( t ) ]  

I f j  is even, 

05(0 = ~3(sj) + [~o(t) - a~(sj)] 

This unfolding has a property that will be crucial for our  energy 
estimates. For  sj<~t<~sj+~, o9(0 stays between o~(sj) and co(sj+~). Thus 
oS(t) stays between r and &(Si+~). If the first step i n / 2  is to the right, 
then the unfolding process results in oS(So) <o3(s,)  < .. .  <aS(s ,+ ~). If  the 
first step is to the left, then we have aS(so)>oS(s~)> . . .  >o3(s,+~). Thus 
the energy of a3 does not contain any terms with s and t coming from dif- 
ferent [sj, sj+ ~] intervals. For  s and t which come from the same [sj, Si+ i]  

I I I I I I I I I t I I I I : 1 : ', l 1 

L 

I. 
1 

Fig. 4. The unfolding process that we use in the Peierls argument, for a single reversal in the 
blocked walk. 
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interval, we see that e3(s)=e3(t) if and only if co(s)=co(t), since co is left 
rigid on [sj, sj+ 1]. Thus H(e3) ~< H(co). 

We have shown that the unfolding does not raise the energy of the 
walk, but we want to show that in fact it lowers the energy by at least an 
amount proportional to the number of reversals in ~. Consider an RL 
reversal. (The argument for the LR case is essentially the same.) The walk 
co is at the same site at times tij_ ~ and tij+,. In betwe.en these times we 
have the flip time s;. At this time the walk is at least a distance L k from 
its position at t~j_l and tij+l. Thus there are at least L k pairs s, t with 
co(s)=co(t), %_~<~s<sj and sj<t<<.tij+~. Define Tj=tij+~-ti,_~. Then 
the above times s, t satisfy 1~Is- tl p/> 1/TP. So we have proved that 

R(I2) 
H(co)>lH(e3)+L k ~ T f "  (7) 

j = l  

The proof is completed by the following two lemmas. 

L a m m a  7. There is a n e > 0 s u c h t h a t  

R(.(2 ) 
Tj-P >~ eL-k(I - 2'~IR(I2 ) 

Lernma  8. The map co-)e3 is one to one on E(I2,_/). 

To complete the proof of Lemma 5, Eq. (7) and Lemma 7 imply 

Z(12, l)<~ ~ exp[-flH(e3)-fleLZkaR(12)] <~exp[-fleL2kaR(12)] Z 
oJ ~ E(~,/) 

where the last inequality uses Lemmas 8. �9 

Proof of Lemma 7. Each step in the original walk can take part in 
at most two reversals in Ok(co). Thus Z j  Tj~< 2N. So at least �89 of the 
Tj satisfy Tj<~4N/R(s Using Eq. (5), we have 

4N 4N 4L k 4 
_ _  t ( k  + 1)(1 +~i) 

R(~Q)~<Tk( 1 - - T ) N L - k - - T k (  1 - - T )  1 - 7  

Thus 

Using 

J 

p(1 - t -6)=(1 -36) (1  + 8 ) =  1-2~5-362~< 1 - 2 6  
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we have  
L - t k+  l)p(l +t~)~ L - i k  + 11(i -2,H 

and the lemma follows. �9 

Proof  o f  Lernrna 8. We show the map is one to one by showing that 
given s and _/, one can reconstruct co from 03. Obviously, i f  we knew the 
flip t imes sj we cou ld  fold 03 to get co. We  have  

j - - I  

0 3 ( s j ) = i j L k + l J  + 2  2 1,,, (8) 
m = I 

Thus ,  g iven t2 and  ./, we can  find the sites 03(sj). The re  m a y  be several  t imes 

at which 03 hits these sites, but  f rom the def in i t ion  of  sj we see that  sj is the 

first t ime for which Eq. (8) holds.  Thus ,  g iven 03, 12, and  _/, we can  find the 
t imes sj, and so we can fold o5 to r econs t ruc t  09. �9 
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